INTENDED USE

The Total Rat/Mouse IGF-I enzyme linked immunosorbent assay (ELISA) kit provides materials for the quantitative measurement of IGF-I in rat and mouse serum, plasma and other biological fluids.

SUMMARY AND EXPLANATION

IGF-I, also known as somatomedin C, is a 7.6 kDa, 70 amino acid residue peptide, which mediates the actions of growth hormone (GH). IGF-I is synthesized as a prohormone, a polypeptide consisting of A, C, B, D, and E domains. After post-translational modification, the mature IGF-I consists of the A, C, B and D domains, and is structurally homologous to IGF-II and insulin.

In vivo, IGF-I is secreted by the liver and several other tissues and is postulated to have mitogenic and metabolic actions at or near the sites of synthesis; this has been termed the paracrine role of IGF-I. IGF-I also appears in the peripheral circulation where it circulates primarily in a high molecular weight tertiary complex with IGF-binding protein-3 (IGFBP-3) and acid-labile subunit (ALS). A smaller proportion of IGF-I may circulate in association with other IGF-binding proteins. It has been estimated that <5% of plasma IGF-I circulates unbound. In vivo synthesis of IGF-I is stimulated by GH, and is also dependent on other factors, including adequate nutrition. IGF-I may inhibit pituitary production of GH; however, a feedback mechanism has not been completely defined.

In humans, plasma IGF-I levels are low during fetal and neonatal life, increase gradually during childhood, peak during mid-puberty, and decline gradually through adult life. Average plasma IGF-I levels are slightly higher in females at each age. Maternal plasma levels increase during pregnancy. Plasma IGF-I levels are stabilized by the IGF-binding proteins and there is negligible diurnal variation. Plasma IGF-I levels are low relative to age- and sex-related norms in GH deficiency, malnutrition, and in the syndrome of GH-receptor deficiency (Laron dwarfism). Abnormally low levels of plasma IGF-I have been used as a diagnostic indicator of GH deficiency, although a significant proportion of GH-deficient children may have IGF-I levels in the normal range, and normal short children may have low IGF-I levels. Plasma IGF-I levels may also be used to monitor the short- and long-term in vivo responses to GH treatment. Abnormally elevated IGF-I levels in acromegaly (GH excess) may be used as a diagnostic tool and to monitor treatment.

Assay of plasma IGF-I is complicated by the presence of IGF-binding proteins, which may sequester IGF-I in the reaction mixture. Various methods have been devised to separate the IGF and IGF-binding proteins prior to assay. Size-exclusion gel chromatography in acid is considered to be optimal, but this procedure is not feasible for routine use. Acidification followed by ethanol precipitation of the IGFBP fraction gives results which are similar to acid-chromatography. SepPak C-18 cartridges are less convenient and give variable results and relatively low recovery.

The Ansh Labs Total rat/Mouse IGF-I Assay uses an acidification and neutralization method to dissociate IGF-I from all the binding proteins. IGF-I levels are quantified in the extracted samples using a highly sensitive and specific enzyme-linked immunosorbent assay.

PRINCIPLE OF THE TEST

The Total Rat/Mouse IGF-I is a quantitative two-step sandwich type immunoassay. In the first step Calibrators, Controls and unknown samples are added to IGF-I antibody coated microtiter wells and incubated along IGF-I Assay Buffer. After a washing step, the plates are then incubated with horseradish peroxidase labeled antibody conjugate. After another washing step, the wells are incubated with substrate solution (TMB). After TMB incubation, an acid stopping solution is added. In principle, the antibody-HRP conjugate binds to the solid phase antibody-antigen complex. Finally, the antibody-antigen-conjugate complex bound to the well is detected by addition of enzyme-substrate reaction. The degree of enzymatic turnover of the substrate is determined by dual wavelength absorbance measurement at 450 nm as primary test filter and 630 nm as reference filter. The absorbance measured is directly proportional to the concentration of IGF-I in the samples and calibrators.

MATERIALS SUPPLIED

CAL-137A - CAL-137F Total Rat/Mouse IGF-I Calibrators A thru F 9 vials, 0.5mL, labeled A-F, containing varying concentrations of Human IGF-I in the range of 0 to 20ng/mL (Refer to Calibration Card for exact values), in buffer with Pro-Clean 400. Store unopened at 0 to -20°C until the expiration date. Avoid repeated freeze thaws.

NOTE: The calibrators are traceable to World Health Organization IGF-I preparation NIBSC code 02/245, version 6.0.

CTR-137-I & CTR-137-II Total Rat/Mouse IGF-I Controls I & II Two vials, 0.5mL, labeled Levels I and II containing low and high IGF-I concentrations (Refer to Calibration Card for exact values) in buffer with Pro-Clean 400. Store unopened at 0 to -20°C until the expiration date. Avoid repeated freeze thaws.

PLT-136 Rat/Mouse IGF-I Ab Coated Microtiter strips One strip holder, containing 12 strips and 96 microtiter wells with IGF-I antibody immobilized to the inside wall of each well. Store at 2-8°C until expiration date in the resealable pouch with a desiccant to protect from moisture.

SPB-121-I Sample Buffer I One bottle, 25 mL, containing sample buffer I with a non-mercury preservative. Store unopened at 2 to 8°C until the expiration date.

SPB-121-II Sample Buffer II One bottle, 25mL, containing sample buffer II with a non-mercury preservative. Store unopened at 2 to 8°C until the expiration date.

Document No: IFU.AL.137 Revision No: 05 Release Date: 02/09/2022 TOTAL Rat/Mouse IGF-I ELISA RUO
ASB-137 IGF-I Assay Buffer

One bottle, 8 mL buffer with a non-mercury preservative. Store at 2-8°C until expiration date.

ECR-137 Total Rat/Mouse IGF-I Ab Enzyme Conjugate Ready-To-Use (RTU)

One bottle, 12 mL, containing HRP-conjugated IGF-I antibody in buffer with a non-mercury preservative. Store at 2-8°C until expiration date.

TMB-100 TMB Chromogen Solution

One bottle, 12 mL, containing a solution of tetramethylbenzidine (TMB) in buffer with hydrogen peroxide. Store at 2-8°C until expiration date.

STP-100 Stopping Solution

One bottle, 12 mL, containing 0.2 M sulfuric acid. Store at 2 to 30°C until expiration date.

WSH-100 Wash Concentrate A

One bottle, 60 mL, containing buffered saline with a nonionic detergent. Store at 2 to 30°C until expiration date. Dilute 25-fold with deionized water prior to use.

MATERIALS REQUIRED BUT NOT PROVIDED

1. Microtiterplate reader capable of absorbance measurement at 450 nm, 405 nm and 630 nm.
2. Microplate shaker.
3. Microplate washer.
4. Semi-automated/manual precision pipette to deliver 10–250 μL.
5. Vortex mixer.
6. Deionized water.
7. Disposable 12 x 75 mm culture tubes.

WARNINGS AND PRECAUTIONS

For Research Use Only. Not for use in diagnostic procedures.

The following precautions should be observed:

a. Follow good laboratory practice.

b. Use personal protective equipment. Wear lab coats and disposable gloves when handling immunoassay materials.

c. Handle and dispose of all reagents and material in compliance with applicable regulations.

WARNING: Potential Biohazardous Material

Handle all reagents and patient samples at a biosafety level 2, as recommended for any potentially infectious human material in the Centers for Disease Control/National Institutes of Health manual "Biosafety in Microbiological and Biomedical Laboratories," 5th Edition, 2007.12

WARNING: Potential Chemical Hazard

Some reagents in this kit may contain Pro-Clean 400 and Sodium azide13 as a preservative. Pro-Clean 400 and Sodium azide in concentrated amounts are irritants to skin and mucous membranes.

For further information regarding hazardous substances in the kit, please refer to the MSDS, either at AnshLabs.com or by request.

SAMPLE COLLECTION

a. Serum or plasma is the recommended sample type.

b. Sample handling, processing, and storage requirements depend on the brand of blood collection tube that you use. Please reference the manufacturer’s instructions for guidance. Each laboratory should determine the acceptability of its own blood collection tubes and serum separation products.

c. Samples should be stored frozen at -20°C or lower.

d. Avoid repeated freezing and thawing of samples.

e. Avoid assaying lipemic, hemolyzed or icteric samples.

f. For shipping, place specimens in leak proof containers in biohazard specimen bags with appropriate specimen identification and test requisition information in the outside pocket of the biohazard specimen bag. Follow DOT and IATA requirements when shipping specimens.

PROCEDURAL NOTES

1. A thorough understanding of this package insert is necessary for successful use of the Total Rat/Mouse IGF-I ELISA assay. It is the customer’s responsibility to validate the assay for their use. Accurate results will only be obtained by using precise laboratory techniques and following the package insert.

2. A calibration curve must be included with each assay.

3. Bring all kit reagents to room temperature before use. Thoroughly mix the reagents before use by gentle inversion. Do not mix various lots of any kit component and do not use any component beyond the expiration date.

4. Use a clean disposable pipette tip for each reagent, calibrator, control or sample. Avoid microbial contamination of reagents, contamination of the substrate solutions with the HRP conjugates. The enzyme used as the label is deactivated by oxygen, and is highly sensitive to microbial contamination. Sodium azide, hypochlorous acid and aromatic chlorohydrations often found in laboratory water supplies. Use deionized water.

5. Incomplete washing will adversely affect the outcome and assay precision. Care should be taken to add TMB into the wells to minimize potential assay drift due to variation in the TMB incubation time. Avoid exposure of the reagents to excessive heat or direct sunlight.

PREPARATION OF REAGENTS

1. **Wash Solution:** Dilute wash concentrate 25-fold with deionized water. The wash solution is stable for one month at room temperature when stored in a tightly sealed bottle.

2. **Microtiter Wells:** Select the number of coated wells required for the assay. The remaining unused wells should be placed in the resealable pouch with a desiccant. The pouch must be resealed to protect from moisture.

ASSAY PROCEDURE

Allow all specimens and reagents to reach room temperature and mix thoroughly by gentle inversion before use. Calibrators, controls, and unknowns should be assayed in duplicate.

1. Label the microtiteration strips to be used.

2. **Sample Preparation:**

 a. In a tube, pipette 10 μL of the sample into 45 μL of IGF-I Sample Buffer I.

 b. Place the tubes in a tight-fitting tube rack and shake at a slow speed (300-400 rpm) at room temperature (23 ± 2°C) for 30 minutes.

 c. Add 45 μL of IGF-I Sample Buffer II to the sample vial, vortex, and incubate for 10 minutes at room temperature. The sample is now ready to be assayed.

3. **Pipette** 20 μL of the Calibrator, Controls and Unknowns from step 2c to the appropriate wells.

4. Add 50 μL of the IGF-I Assay Buffer to each well using a repeater pipette.
5. Incubate the plate, shaking at a fast speed (600-800 rpm) on an orbital microplate shaker, for 60 minutes at room temperature (23 ± 2°C).
6. Aspirate and wash each strip 5 times with Wash Solution (350µL per well) using an automatic microplate washer.
7. Add 100 µL of the Rat/Mouse IGF-I Ab Enzyme Conjugate-RTU to each well using a repeater pipette.
8. Incubate the plate, shaking at a fast speed (600-800 rpm) on an orbital microplate shaker, for 30 minutes at room temperature (23 ± 2°C).
9. Aspirate and wash each strip 5 times with the Wash Solution (350µL per well) using an automatic microplate washer.
10. Add 100 µL of the TMB chromogen solution to each well using a repeater pipette. Avoid exposure to direct sunlight.
11. Incubate the wells, shaking at 600-800 rpm on an orbital microplate shaker, for 8-12 min at room temperature (23 ± 2°C). **NOTE:** Visually monitor the color development to optimize the incubation time.
12. Add 100 µL of the Stopping solution to each well using a repeater pipette. Read the absorbance of the solution in the wells within 20 minutes, using a microplate reader set to 450 nm. **NOTE:** Zero calibrator should be programmed as “Blank” while reading the optical density. If instrument has a wavelength correction, set the instrument to dual wavelength measurement at 450 nm with background wavelength correction at 630 nm.

RESULTS

NOTE: The results in this package insert were calculated by plotting the log optical density (OD) data on the y-axis and log IGF-I concentration on x-axis using a cubic regression curve-fit. Alternatively, log vs. log quadratic regression curve-fit can be used. Other data reduction methods may give slightly different results.

1. Calculate the mean optical density (OD) for each calibrator, Control, or Unknown.
2. Plot the log of the mean OD readings for each of the Calibrators along the y-axis versus log of the IGF-I concentrations in ng/mL along the x-axis, using a cubic regression curve-fit.
3. Determine the IGF-I concentrations of the Controls and unknowns from the calibration curve by matching their mean OD readings with the corresponding IGF-I concentrations.
4. Any sample reading lower than the analytical sensitivity should be used as measured concentration.
5. **MULTIPLY** the measured concentrations in ng/mL by the dilution factor (10 folds).

LIMITATIONS

The reagents supplied in this kit are optimized to measure IGF-I levels in serum. If there is evidence of microbial contamination or excessive turbidity in a reagent, discard the vial. For assays employing antibodies, the possibility exists for interference by heterophilic antibodies in the samples.14

QUALITY CONTROL

- Each laboratory should establish mean values and acceptable ranges to assure proper performance.
- Rat/Mouse IGF-I ELISA controls or other commercial controls should fall within established confidence limits.
- The confidence limits for Rat/Mouse IGF-I controls are printed on the Calibration card.
- A full calibration curve, low and high-level controls, should be included in each assay.
- TMB should be colorless. Development of any color may indicate reagent contamination or instability.

REPRESENTATIVE CALIBRATION CURVE DATA

<table>
<thead>
<tr>
<th>Well Number</th>
<th>Calibrators</th>
<th>Mean Absorbance</th>
<th>Conc (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1, A2</td>
<td>A</td>
<td>0.010 (Blank)</td>
<td>0</td>
</tr>
<tr>
<td>B1, B2</td>
<td>B</td>
<td>0.029</td>
<td>0.500</td>
</tr>
<tr>
<td>C1, C2</td>
<td>C</td>
<td>0.136</td>
<td>1.493</td>
</tr>
<tr>
<td>D1, D2</td>
<td>D</td>
<td>0.542</td>
<td>4.555</td>
</tr>
<tr>
<td>E1, E2</td>
<td>E</td>
<td>1.194</td>
<td>9.387</td>
</tr>
<tr>
<td>F1, F2</td>
<td>F</td>
<td>2.508</td>
<td>20.077</td>
</tr>
</tbody>
</table>

CAUTION: The above data must not be employed in lieu of data obtained by the user in the laboratory

ANALYTICAL CHARACTERISTICS

Analytical Sensitivity:
The analytical sensitivity in the Total Rat/Mouse IGF-I assay, as calculated by the interpolation of mean plus two standard deviations of 24 replicates of calibrator A (0 ng/mL) and calibrator B (0.5 ng/mL), is 0.0397 ng/mL.

Analytical Specificity:
The monoclonal antibody pair used in the assay detects IGF-I. Other related analytes at the concentration in the table below did not show any significant cross-reaction.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Cross-reactant</th>
<th>Concentration (ng/mL)</th>
<th>% Cross-reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IGFBP-2</td>
<td>1000</td>
<td>ND</td>
</tr>
<tr>
<td>2</td>
<td>IGFBP-3</td>
<td>1000</td>
<td>ND</td>
</tr>
<tr>
<td>3</td>
<td>IGFBP-4</td>
<td>1000</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>IGFBP-5</td>
<td>1000</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>Human IGF-I</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>IGF-II</td>
<td>1000</td>
<td>ND</td>
</tr>
</tbody>
</table>

Linearity of Dilution
Calibrator F containing various IGF-I levels was diluted serially in Calibrator A. Two samples containing various IGF-I level were first prepared as instructed in sample preparation and from there it was diluted at 1:2 level in calibrator A. The % recovery is presented in the following table:-

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Dilution factor (1 in X)</th>
<th>Expected Value in ng/mL</th>
<th>Observed Value in ng/mL</th>
<th>% Recovery</th>
<th>Average % Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL-F</td>
<td></td>
<td></td>
<td></td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10.000</td>
<td>10.074</td>
<td>101%</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.000</td>
<td>4.934</td>
<td>99%</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.500</td>
<td>2.535</td>
<td>101%</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.250</td>
<td>1.212</td>
<td>97%</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.625</td>
<td>0.622</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>S1, 1:10</td>
<td></td>
<td></td>
<td></td>
<td>106%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.196</td>
<td>5.514</td>
<td>106%</td>
<td>106%</td>
<td></td>
</tr>
<tr>
<td>S2, 1:10</td>
<td></td>
<td></td>
<td></td>
<td>94%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.896</td>
<td>3.653</td>
<td>94%</td>
<td>94%</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

FOR RESEARCH USE ONLY

Not for use in diagnostic procedures.

The Ansh Labs logo is a trademark of Ansh Labs.

Manufactured by:
Ansh Labs
445 Medical Center Blvd.